The nation’s concrete roadways receive a whole lot of wear and tear, particularly in regions that experience extreme changes in temperature during the summer and winter. These temperature fluctuations can cause paved concrete surfaces to expand and contract, resulting in cracks that require seasonal repairs and replacement.
Thanks to the efforts of a mechanical engineering professor at Louisiana State University, however, transportation officials could soon be able to treat concrete roadways with a polymer-based sealant that mitigates the effects of seasonal expansion and contraction to prevent cracking. This, in turn, could save states a great deal of money in repairs each year.
Engineering professor Guogiang Li first began experimenting with polymer-based sealants in 2009, after receiving funding from the National Cooperative Highway Research Program and the Louisiana Research Transportation Center. His first prototype was a one-way memory shape polymer that could stretch and compress in response to seasonal temperature fluctuations. Then, in 2012, he created an improved two-way shape memory polymer sealant and combined it with asphalt to improve its ability to bond with concrete and resist environmental wear.
Following a successful round of laboratory testing, transportation departments in Louisiana, Texas and Minnesota will begin testing the concrete sealant’s performance on real roadways this year. This testing and certification process is expected to be complete by the end of 2019. If it performs as advertised, the polymer-based sealant could become a common feature of concrete roadways throughout the country.
Need a hand with your next paving project? Give us a call to order one of our concrete buggies or metered mobile mixers today!